Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown.
نویسندگان
چکیده
The nuclear envelope is a subdomain of the endoplasmic reticulum (ER). Here we characterize CNEP-1 (CTD [C-terminal domain] nuclear envelope phosphatase-1), a nuclear envelope-enriched activator of the ER-associated phosphatidic acid phosphatase lipin that promotes synthesis of major membrane phospholipids over phosphatidylinositol (PI). CNEP-1 inhibition led to ectopic ER sheets in the vicinity of the nucleus that encased the nuclear envelope and interfered with nuclear envelope breakdown (NEBD) during cell division. Reducing PI synthesis suppressed these phenotypes, indicating that CNEP-1 spatially regulates phospholipid flux, biasing it away from PI production in the vicinity of the nuclear envelope to prevent excess ER sheet formation and NEBD defects.
منابع مشابه
Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum
The endoplasmic reticulum (ER) is an extensive membrane system that serves as a platform for de novo phospholipid synthesis. The ER is partitioned into distinct functional and structural domains, the most notable of which is the nuclear envelope. Here we discuss the role of nuclear envelope localized CNEP-1(Nem1) in spatial regulation of de novo phospholipid synthesis within the ER. CNEP-1(Nem1...
متن کاملTransmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells
The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alte...
متن کاملYeast nuclear envelope subdomains with distinct abilities to resist membrane expansion.
Little is known about what dictates the round shape of the yeast Saccharomyces cerevisiae nucleus. In spo7Delta mutants, the nucleus is misshapen, exhibiting a single protrusion. The Spo7 protein is part of a phosphatase complex that represses phospholipid biosynthesis. Here, we report that the nuclear protrusion of spo7Delta mutants colocalizes with the nucleolus, whereas the nuclear compartme...
متن کاملAn Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth*♦
Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear e...
متن کاملNuclear membrane disassembly and rupture.
The nuclear envelope consists of two membranes traversed by nuclear pore complexes. The outer membrane is continuous with the endoplasmic reticulum. At mitosis nuclear pore complexes are dismantled and membranes disperse. The mechanism of dispersal is controversial: one view is that membranes feed into the endoplasmic reticulum, another is that they vesiculate. Using Xenopus egg extracts, nucle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2014